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ABSTRACT 

Activity recognition is an important field that influences different applications related to 

healthcare. In the current work, we have used a triaxial accelerometer IMU sensor to record 

the activity of 30 different subjects having a diverse age range of 10 to 45 which consisted 

of 11 females and 19 males. Subjects were asked to perform 5 different activities for 20 

seconds and the sensor was placed at the umbilical region. Further, this data is pre-processed 

with different filtering algorithms and fed to deep learning models to discretely identify 

different activities. Activities are specifically chosen that have a very close resemblance to 

each other and the performances of different deep learning models are observed on the data. 

The classification accuracy of two models reported 86% and 90 % for CNN and CNN-

LSTM respectively. 

Keywords: Human activity recognition, IMU Sensor, Deep learning, Classification, 

Convolution neural network, Long Short Term Memory. 
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1. INTRODUCTION

Human activity recognition (HAR) is an important research field for human computer 

interaction and ubiquitous computing. Activity recognition [1-2] is deeply rooted in health 

care applications that monitor a person's daily routine and keep a check on them. Because of 

its broad range of human-centric applications, human activity recognition has received 

attention, recently. One key application area is to monitor everyday activities because 

modern lifestyles are leading to a rise in diseases of human such as diabetes, obesity, high 

blood pressure, insomnia and cardiovascular problems [3-5]. Such patients needs to engage 

in regular activities like- walking, riding, jogging, running, push-ups, and sit-ups.For the 

subject to assess their daily success, accurate information about the length of certain 

activities is critical. As a result, activity recognition determines whether the person has 

trouble sticking to their everyday routines. Activity recognition may also be used as part of 

an elder-care support system, as it allows family members to monitor the behaviours of their 

elderly relatives or residents while they are away from home. Home security, surveillance, 

home automation, workplaces, IoT  & smart cities, electrical energy saving systems, object 

detection, bipedal robot walking [6-7], and pedestrian navigation all such activities are 

strictly depends on recognition of activity. HAR problem which is a problem of pattern 

recognition and for HAR we have two types of solution i.e. wearable sensor based and 

vision sensor based. The main focus of wearable sensor-based HAR is on the belief that a 

particular body movement can be translated into a distinct sensor signal pattern, which can 

then be further analysed by using a machine learning method to classify. Deep learning 

techniques have recently outperformed many traditional machine learning approaches, 

reflecting a significant research trend in HAR. Deep learning [8-10] has the advantage of 

being able to extract features automatically based on the task requirements. 

This research paper attempts to resolve many of the issues associated with capturing human 

behaviour using wearable sensors. The study of five distinct walk related activity patterns 

was thoroughly presented in the research work. The paper also describes the creation of two 

deep learning-based HAR models-CNN and CNN-LSTM [11-12], for the classification of 

five different activities. Finally, the work includes a comparison of all the models based on 

their output matrices. The classification models are validated using data sets of 30 subjects 

from various age groups, sexes, and health conditions. In terms of data collection and 

classification, the proposed solution is unique. 
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Literature Review 

Deep learning is mostly used in wearable based HAR, especially CNN is one of the well-

studied deep learning techniques for extracting features and detecting hidden or unknown 

behaviour patterns from raw time series sensor data. Various researchers have done 

significant work on activity recognition using machine learning techniques and other related 

work [13-19], some of which are listed below in Table I.  
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2. PROPOSED METHODOLOGY 

This experiment aims to develop a better classification modelling technique to recognize 

different activities performed by a human being. We handpicked 5 activities that closely 

resemble and recorded them with 30 subjects. These 30 subjects have age in a range of 10 to 

45 years. It consists of 11 females and 19 males. When an activity is performed repeatedly it 

generates a particular type of acceleration due to different muscle memory that is inherently 

built by the body over time [2-4]. For instance when we look at figure 3 and figure 5 walk 

on the toe and normal walk are seemingly similar activities but still, the specific difference 

can easily be observed in the graph of both activities. Each activity has its phases as which 

inherently differ from one another and this is the reason for such differences in these 

patterns. We tend to exploit these patterns in the data to accurately classify them. In this 

experimental setup, only one IMU sensor [20-22] is used to mimic the data that a 

smartphone user may generate. More than one sensor may easily produce better results but it 

may not apply to the normal life of users that carry only one smart device. Fig. 1 depicts the 

proposed human activity recognition task. 

 

Fig. 1 Flow chart of the proposed work on HAR 
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The Subjects performed 5 different activities [7-9] namely 'normal walk', 'walk on the toe', 

'jogging', sit-ups', and 'walking downstairs' repeatedly, and there accelerometer reading is 

recorded using BWT61 IMU Sensor which was placed on subjects umbilical region, due 

to human center of mass lies there. Afterward, this data is pre-processed and fed to a neural 

network for training. CNN and CNN-LSTM are used for training of the data. Fig.2 shows 

the different subject of diverse age range were used for data collection. UID (user id of the 

subject), timestamp, operation, x, y and z accelerations are the five features considered as 

input to the learning algorithm in the proposed approach. 

Each sample is given a label, which is used to process the data. The acceleration is 

normalized and scaled, and then a hot vectorization is performed. 

 

Figure3, 4,5,6,7 are the trajectories of 5 different activities performed by the subjects. The 

trajectories are based on 3-D accelerometer data taken from IMU sensor. We may also and 

take the magnetometer reading, angular velocity, acceleration due to gravity or fusion of 

these data as a feature for our analysis. 

CNN 

The convolution neural network [23-25] is well known for its pattern recognition property. 

It splits up the data using different filters and chooses the best features to classify the 

Fig.2 Three different subjects with IMU placed on Umbilical region (centre of mass of the human 

body) and IMU sensor               
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activity. The data is split up into frames and then filters are applied to it that creates a 

volume of frames that contain different features. These features are finally used for 

classification.

 

 

Fig.3 Subject trajectory of Walk on toe 

Fig.4 Subject trajectory of Sit-ups 
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CNN-LSTM 

CNN is profound for its feature extraction property. Time-series data is processed using 

long and short term memory. A combination of both produces boosting up of results as 

CNN extracts the features and then LSTM is employed for the learning of these features. 

We can see a significant difference in the accuracies of CNN and CNN-LSTM [26] 

architectures. 

3. RESULTS AND DISCUSSION 

The CNN model obtained an accuracy of 87% while CNN-LSTM was able to boost it up to 

90 %. The difference in the values of recall, precision and F-score are depicted in figure 11. 

As we look up to the figure 9 and figure 10 we can see most errors are made between 

Fig.5 Subject trajectory of normal walk 

Fig.6 Subject trajectory of Jogging 

Fig.7 Subject trajectory of downstairs  
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normal walk and walk on the toe as both have a very close resemblance. CNN miss 

classified 30 normal walks to be a walk on the toe and 22 similar errors are made by CNN-

LSTM model. Some small errors are seen between jogging and normal walk. Fig.8   

demonstrates the model accuracy and loss plot for CNN-LSTM. We see that after first 20 

epochs the training and test data both have the saturated and stable values i.e accuracy 

almost in the range of 1. In fig. 9 and 10 the confusion matrix shows very nice accuracy and 

there is no such activity is there in which the model is unable to distinct the activity. This is 

also shown that using hybrid deep learning model CNN-LSTM, we have achieved more 

accuracy than only CNN.

 

 
Fig.9. Confusion matrix of  CNN-LSTM model 

Fig.8 Accuracy and loss plot for CNN-

LSTM model 
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4. CONCLUSION 

CNN model performed profoundly well for the classification of different activities and it is 

evident from the data presented in figure 11 that CNN-LSTM shows a significant increase in 

the efficacy of the classification task. In current work, we have included 5 activities with 

close resemblance and both models showed satisfying performance. Both precision and 

recall of the models are high which depicts the reliability of the technique employed. 

Currently, data is taken from 30 different subjects. Reaching such good accuracies with this 

amount of sampling data implies models used have high competency. Present work can be 

explored for diverse human performances in future. The Microsoft Kinect sensor can also 

utilized for the purpose. The computer vision-based multi-sensor and multi-view HAR 

system will be developed in future study. In the multi-view environment, the Microsoft 

Fig.11 Comparison between CNN and CNN-LSTM 

performance 

Fig.10. Confusion matrix for CNN 

model 
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Kinect v2 sensor will be used for HAR and GAIT analysis. The data collection for 30 topics 

has been made publicly available online for use by the science and academic communities. 
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